How do you differentiate x^x?

There are two ways we can find the derivative of x^x. It's important to notice that this function is neither a power function of the form x^k nor an exponential function of the form b^x, so we can't use the differentiation formulas for either of these cases directly. (i) Let y=x^x, and take logarithms of both sides of this equation: ln(y)=ln(x^x). Using properties of logarithmic functions, we can rewrite this as ln(y)=x.ln(x). Then differentiating both sides with respect to x, and using the chain rule on the LHS and product rule on the RHS, gives 1/y.dy/dx=ln(x)+1. Rearranging, we have dy/dx=y.(ln(x)+1). That is, dy/dx=x^x(ln(x)+1). (ii) Write x^x=e^(ln(x^x))=e^(x.ln(x)), using the properties of the exponential and logarithmic functions. Now, d/dx(x.ln(x))=ln(x)+1 by the product rule. Hence, d/dx(e^(x.ln(x)))=(ln(x)+1).(e^(x.ln(x)) by the chain rule, and using the fact that the derivative of e^[f(x)]=f'(x).e^[f(x)] for any differentiable function f(x). Finally, rewriting e^(x.ln(x)) as x^x gives d/dx(x^x)=x^x.(ln(x)+1), as with the first method.

LS
Answered by Louis S. Further Mathematics tutor

5697 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


Write (1+2i) /(2-i) in form x+iy


Find the set of values of x for which (x+4) > 2/(x+3)


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning