The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi

Tangent is parallel, therefore (dy/dx)=0.

Find y:

y = r sin(x) = 3a(1 + cos(x))(sin(x))

Differentiate y with respect to x

dy/dx = 3a[(2cos(x) - 1)(cos(x) + 1)] 

= 0

Solve equation

2cos(x)- 1 = 0

cos(x) = 1/2

x = pi/3

Therefore r = 3a(1 + cos(pi/3))

a = 9a/2

A: (9a/2, pi/3)

SS
Answered by Salah S. Further Mathematics tutor

6875 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the differential equations dx/dt=2x+y+1 and dy/dt=4x-y+1 given that when t=0 x=20 and y=60. (A2 Further pure)


How do you find the matrix corresponding to a transformation?


FP1 June 2016 Edexcel Exam Paper Question 7


Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning