Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?

This is a typical further maths question, doing it correctly is a matter of carrying out a two-step process. 

Start by finding the determinant of the matrix,

det(A)=ad-bc

Then swap the entries a d and negate the other entries. After dividing by the determinant the inverse of A is given.

A^-1=1/(ad-bc)([d -b],[-c, a]).

LR
Answered by Larry R. Further Mathematics tutor

3491 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


Prove e^(ix) = cos (x) + isin(x)


How do I express complex numbers in the form reiθ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning