Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?

This is a typical further maths question, doing it correctly is a matter of carrying out a two-step process. 

Start by finding the determinant of the matrix,

det(A)=ad-bc

Then swap the entries a d and negate the other entries. After dividing by the determinant the inverse of A is given.

A^-1=1/(ad-bc)([d -b],[-c, a]).

LR
Answered by Larry R. Further Mathematics tutor

3410 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write 1 + √3i in modulus-argument form


Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Find the modulus and argument of the complex number 1+2i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning