Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?

This is a typical further maths question, doing it correctly is a matter of carrying out a two-step process. 

Start by finding the determinant of the matrix,

det(A)=ad-bc

Then swap the entries a d and negate the other entries. After dividing by the determinant the inverse of A is given.

A^-1=1/(ad-bc)([d -b],[-c, a]).

LR
Answered by Larry R. Further Mathematics tutor

3470 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


Can you show me how to solve first order differential equations using the integrating factor method?


Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning