If one proton is travelling through space at 0.3c, what is it's kinetic energy in MeV?

We know the formula for kinetic energy is

KE = (1/2)mv2.

If we know that c, the speed of light, is 3x108ms-1 (you will be given this value in your Data & Formula books in the exam) and the proton is traveling at 0.3c, it has a velocity of

0.3x3x108 = 9x107ms-1.

Therefore v2 will be (9x107)2 = 8.1x1015.

We know that the mass of a proton is 1.67x10-27kg (again, you will be given this value in the exam).

Therefore kinetic energy in Joules (the SI unit, because we have currently only used SI units) is (1/2) x 1.67x10-27 x 8.1x1015 = 6.76x10-12J

It is known that 1eV (electron volt) is equal to 1.6x10-19J. Therefore dividing our energy in Joules by this value will give us our energy in eV.

(6.76x10-12) / (1.6x10-19) = 4.23x107eV.

As 1 MeV = 1x106eV, we can find our value in MeV by dividing it by 1x106;

(4.23x107) / (1x106) = 42.3MeV.

This is a standard unit used in particle energies, and is quite a common question in any A Level physics exam.

OB
Answered by Oisin B. Physics tutor

6655 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Give examples of how the photoelectric effect supports the particle nature of light and defies the wave theory.


State the principle of superposition of waves and illustrate it schematically.


What is meant by a uniform electric field?


The tip of each prong of a tuning fork emitting a note of 320Hz vibrates in SHM with an amplitude of 0.50mm. What is the speed of each tip when its displacement is zero?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning