How does energy flow from voltage source to resistor in a simple DC circuit?

Let us consider a simple dc circuit consisting of a battery and a resistor connected by ideal wires. As we know, current starts to flow thorugh the resistor and heat is generated as a result of this current flow. We need to determine how this energy is transferred from the voltage source to the resistor. The answer, suprisingly, is that the ideal wires connecting the battery to the resistor carry no energy at all. Most of the energy flows around the ideal wires. This is because the electric field inside the wires is zero and according to the Poynting theorem, no energy can flow if the electric field is zero in any given region of space. However, a radial electric field exists outside the current carrying wires and hence energy flows parallel to the wires and gets converted to heat in the resistor. 

Answered by Sree Harsha N. Physics tutor

2215 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The speed of water moving through a turbine is 2.5 m/s. Show that the mass of water passing through an area of 500 metres squared in one second is about 1 x 10^6 kg (density of sea water = 1030 kg/m^3)


Calculate the time taken for 1000L of water at rtp to be heated to 40degrees celsius using a 40kW heater


A man weighing 600N steps on a scale that contains a spring. The spring is compressed 1cm under their weight. Find the force constant of the spring and total work done on its compression.


An ice cube with a small iron ball in its centre is placed in a cup of water. 3.9 x 10-3kg of water in the cup is displaced and the volume of the ice cube is 4.0 x 10-6m3. Ice density: 1000 kg m-3 Iron density: 7800 kg m-3, what is the volume of the iron?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy