Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.

If we want to prove it, we need to prove every odd number can be expressed as the difference of two squares, which is very easy.

Suppose this odd number to be 2n-1, then we can see 2n-1=n2-(n-1)2

Then we let pq=a2-b2=(a-b)(a+b).Then we can see either p=a-b & q=a+b or 1=a-b & pq=a+b, which are two different forms of squares.

SL
Answered by Shibo L. STEP tutor

7754 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.


What do integrals and derivatives actually do/mean?


By use of calculus, show that x − ln(1 + x) is positive for all positive x.


What is the largest positive integer that always divides n^5-n^3 for n a natural number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning