Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.

If we want to prove it, we need to prove every odd number can be expressed as the difference of two squares, which is very easy.

Suppose this odd number to be 2n-1, then we can see 2n-1=n2-(n-1)2

Then we let pq=a2-b2=(a-b)(a+b).Then we can see either p=a-b & q=a+b or 1=a-b & pq=a+b, which are two different forms of squares.

SL
Answered by Shibo L. STEP tutor

7660 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.


Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Let p and q be different primes greater than 2. Prove that pq can be written as difference of two squares in exactly two different ways.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning