Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.

If we want to prove it, we need to prove every odd number can be expressed as the difference of two squares, which is very easy.

Suppose this odd number to be 2n-1, then we can see 2n-1=n2-(n-1)2

Then we let pq=a2-b2=(a-b)(a+b).Then we can see either p=a-b & q=a+b or 1=a-b & pq=a+b, which are two different forms of squares.

SL
Answered by Shibo L. STEP tutor

7302 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Find all positive integers n such that 12n-119 and 75n-539 are both perfect squares. Let N be the sum of all possible values of n. Find N.


Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)


Find 100 consecutive natural numbers, each of which is composite


Differentiate x^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences