What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?

A particle with electric charge q, mass m and velocity v in a constant magnetic field B experiences a force due to the field:

F = qv X B

The 'X' (cross-product) means that the force is always at 90° (perpendicular) to both the velocity and magnetic field.

If v and B point along the same line (parallel or antiparallel), the particle feels no force. Otherwise it will feel a force and accelerate (change in velocity). But acceleration doesn't necessarily mean change in speed.

Because the force is perpendicular to the velocity (direction of travel), the particle's velocity changes only in direction. The speed (magnitude of the velocity) of the particle does not change.

 

Work is defined as the force F applied to the particle times the distance s over which is it applied in the same direction.

W = Fs

(technically, W = F • ds but they took the fun out of A level physics, eh?)

Since the magnetic force is always perpendicular to the direction of travel, and hence only changes the particle's direction and not its speed, no work is done on the particle by this force:

W = 0.

N.B. The units Joules and Newton-metres are equivalent. [J] ≡ [Nm]

 

To understand further, try googling 'vector cross product', 'vector dot product'. The magnetic force is a cross product. The definition of work is a dot product. Can you guess why they are called that? :P

RP
Answered by Rich P. Physics tutor

12922 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is released from stationary at a great height. Explain how the forces acting on it change before it hits the ground and how these forces affect the velocity of the ball.


What is gravitational potential energy? Why is it negative?


Describe simple harmonic motion (SHM). Sketch a displacement-time graph for a particle undergoing SHM and the corresponding velocity-time and acceleration-time graphs. Use these graphs to describe the relationship between accleration and displacment.


One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning