Find arsinh(x) in terms of x

let y=arsinh(x)x=sinh(y)=(ey - e-y)/22x=e- e-y2x*ey=ey-1 (multiply byey)0=(ey)2-2xey-1This is a quadratic in ey with coefficients: a=1,b=-2x,c=-1Usinng the quadratic formula (and simplifying):e^y=x +/- sqrt(x2+1)but ey=x-sqrt(x2+1) isn't possible as ey>0 for all y.so ey=x+sqrt(x2+1)y=ln(x+sqrt(x2+1))arsinh(x)=ln(x+sqrt(x2+1)).(Note that sqrt(x) is standard notation for 'the square root of x' on computers).

JB
Answered by Joe B. Further Mathematics tutor

8429 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


Define tanh(t) in terms of exponentials


How do you solve, dy/dx=(x^2+y^2)/xy?


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning