Find the square root of i

When dealing with powers of complex numbers, always start by putting the quantity into exponential form.

i has a magnitude of and an argument of π/2. Using Euler's formula,

i = exp(iπ/2)

Now the expression is in exponential form, taking the square root is easy, using basic exponential math.

sqrt(i) = (exp(iπ/2))^(1/2) = exp(iπ/4)

This quantity has a modulus of 1 and an argument of π/4. Using Euler's formula again,

sqrt(i) = (1 + i)/sqrt(2)

JL
Answered by Jamie L. Further Mathematics tutor

13884 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


Define tanh(t) in terms of exponentials


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning