A spherical object of mass 150kg is orbiting the Earth. The distance between the centre of the object and the centre of the Earth is 25,000m. What is the kinetic energy of the object?

This is an example of circular motion caused by a centripetal force. In this case, the centripetal force is the gravitational force between the Earth and the object. Linking the equations for circular motion (F = mv^2/r) and for the gravitational force between two masses (F = GMm/r^2) can give us the information requested in the question.

The force terms (F) in both equations should be equated, as it is the gravitational force in the second equation that is causing the circular motion described in the first. This means we can write mv^2/r = GMm/r^2 (where m is the mass of the orbiting object and M is the mass of the orbited object, in this case the Earth, which is 5.98*10^24 kg. G is the gravitational constant and r is the distance between the masses). Cancelling the m and r terms gives:

v^2 = GM/r

It should be noted that v here gives the speed of the object - the velocity in the direction of the tangent of the orbit.

The equation for the kinetic energy of an object is given by:

KE = 1/2 * mv^2

Since we have an equation that tells us v^2, we simply need to multiply that equation by m/2 to complete the question.

KE = 1/2 * GMm/r

(remember, M and m are different - m is the mass of the smaller object in this case)

Now it is just a case of plugging in the values to get your final answer.

KE = (1/2 * 6.6710^-11 * 5.9810^24 * 150)/25000 = 1.2*10^12 Joules.

Done!

RL
Answered by Ryan L. Physics tutor

2675 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


Define Simple Harmonic Motion


A ball is thrown up with an initial velocity of 8 m/s and initial height of 1.5m above the ground. Calculate the maximum height the ball reaches and the time it takes to get there.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences