How do I find how much radioactive material is left after time t if I know its half-life?

To answer this question, all you have to know is that the amount of material as a function of time, M(t), is related to the decay constant, λ, by the equation

M(t) = M0exp(-tλ),

where Mis the amount of material you start out with (this could be the mass or the number of particles of the material). λ is expressed in terms of the half-life, t1/2, as 

λ = ln(2)/t1/2.

Using these equations and you're known values of M0 and t1/2, you can calculate M(t) for any time.

But how do we know these equations are correct? It's all in how the decay rate is defined. We know that the radioactive activity, the amount of material decaying per second, is proportional to the total amount of the material. Hence we can say

dM/dt = -Mλ.

The minus sign is required because we know that the amount of material is being reduced. We can rearrange this equation to the form

dM/M = -λdt

and integrating both sides gives

ln(M) = -λt + c,

where c is a constant. This then gives

M = Aexp(-λt).

Using the fact that M(t=0) = M0, A must equal M0, so

M = M0exp(-λt).

WS
Answered by Wilf S. Physics tutor

3122 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


Calculate the threshold frequency for a metal with a work function of 3eV


A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


An alpha particle is accelerated with 5MeV of kinetic energy towards the nucleus of a gold atom with atomic number 79. What is the distance of closest approach that is reached by the alpha particle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning