How do I find how much radioactive material is left after time t if I know its half-life?

To answer this question, all you have to know is that the amount of material as a function of time, M(t), is related to the decay constant, λ, by the equation

M(t) = M0exp(-tλ),

where Mis the amount of material you start out with (this could be the mass or the number of particles of the material). λ is expressed in terms of the half-life, t1/2, as 

λ = ln(2)/t1/2.

Using these equations and you're known values of M0 and t1/2, you can calculate M(t) for any time.

But how do we know these equations are correct? It's all in how the decay rate is defined. We know that the radioactive activity, the amount of material decaying per second, is proportional to the total amount of the material. Hence we can say

dM/dt = -Mλ.

The minus sign is required because we know that the amount of material is being reduced. We can rearrange this equation to the form

dM/M = -λdt

and integrating both sides gives

ln(M) = -λt + c,

where c is a constant. This then gives

M = Aexp(-λt).

Using the fact that M(t=0) = M0, A must equal M0, so

M = M0exp(-λt).

WS
Answered by Wilf S. Physics tutor

2851 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


In one second a mass of 210 kg of air enters at A. The speed of this mass of air increases by 570 m s–1 as it passes through the engine. Calculate the force that the air exerts on the engine.


Why is the refractive index of water bigger than that of air?


Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning