How do I find how much radioactive material is left after time t if I know its half-life?

To answer this question, all you have to know is that the amount of material as a function of time, M(t), is related to the decay constant, λ, by the equation

M(t) = M0exp(-tλ),

where Mis the amount of material you start out with (this could be the mass or the number of particles of the material). λ is expressed in terms of the half-life, t1/2, as 

λ = ln(2)/t1/2.

Using these equations and you're known values of M0 and t1/2, you can calculate M(t) for any time.

But how do we know these equations are correct? It's all in how the decay rate is defined. We know that the radioactive activity, the amount of material decaying per second, is proportional to the total amount of the material. Hence we can say

dM/dt = -Mλ.

The minus sign is required because we know that the amount of material is being reduced. We can rearrange this equation to the form

dM/M = -λdt

and integrating both sides gives

ln(M) = -λt + c,

where c is a constant. This then gives

M = Aexp(-λt).

Using the fact that M(t=0) = M0, A must equal M0, so

M = M0exp(-λt).

WS
Answered by Wilf S. Physics tutor

2792 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

When a 470 micro farad capacitor is discharged through a fixed resistor R, the pd across it decreases by 80% in 45 s. Calculate the time constant of the circuit


Describe how emission spectra are formed and how they can be used to identify the elemental composition of a star.


A diver of mass 60kg stands on the end of a diving board (2m in length). Calculate the upward force exerted on the retaining spring which is 30cm from the start of the diving board.


Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences