A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.

From newton's first law, an object remains in its inertial frame until a force acts upon it. This means that according to a stationary observer, the object will remain at rest or continue moving at the same velocity in the same direction until a force acts upon it. From Newton's second law we know that the force is equal to the mass (not weight) times the acceleration. The supertanker therefor goes from an initial velocity v0 = 4.5m/s to vf = 0 in one hour (3600s). The acceleration is defined as the change in velocity over time a = (v0 - vf)/t. As we all the variables on the right hand side of the equation we can solve for a = 4.5/(3600) = 0.00125 m/s2. We then use this value to calculate the braking force: F = m*a = 1.25 x (10^-3) x 4 x (10^+8) = 5 x (10^5) N.

JC
Answered by Jack C. Physics tutor

10349 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does having a rotating plate in a microwave help food to be heated eavenly?


Explain the difference between forced vibration and resonance in an oscillating object.


How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?


A 1kg spring has an unloaded length 10cm and has an elastic constant of 100N/m. It is compressed to 6cm then placed facing upwards on the floor. When released it travels vertically upwards. How high does it jump? You may assume no energy is lost to heat o


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning