A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.

From newton's first law, an object remains in its inertial frame until a force acts upon it. This means that according to a stationary observer, the object will remain at rest or continue moving at the same velocity in the same direction until a force acts upon it. From Newton's second law we know that the force is equal to the mass (not weight) times the acceleration. The supertanker therefor goes from an initial velocity v0 = 4.5m/s to vf = 0 in one hour (3600s). The acceleration is defined as the change in velocity over time a = (v0 - vf)/t. As we all the variables on the right hand side of the equation we can solve for a = 4.5/(3600) = 0.00125 m/s2. We then use this value to calculate the braking force: F = m*a = 1.25 x (10^-3) x 4 x (10^+8) = 5 x (10^5) N.

JC
Answered by Jack C. Physics tutor

10288 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the motion of a skydiver from leaving the aircraft to reaching terminal velocity


Find the angle at which total internal refraction takes place when light is going from glass to air.


A given star has a peak emission wavelength of 60nm, lies 7.10*10^19m away and the intensity of its electromagnetic radiation reaching the Earth is 3.33*10^-8Wm^-2. Calculate the star's diameter


With the help of a suitably labelled graph, explain what is meant by resonance of a mechanical system.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences