A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.

From newton's first law, an object remains in its inertial frame until a force acts upon it. This means that according to a stationary observer, the object will remain at rest or continue moving at the same velocity in the same direction until a force acts upon it. From Newton's second law we know that the force is equal to the mass (not weight) times the acceleration. The supertanker therefor goes from an initial velocity v0 = 4.5m/s to vf = 0 in one hour (3600s). The acceleration is defined as the change in velocity over time a = (v0 - vf)/t. As we all the variables on the right hand side of the equation we can solve for a = 4.5/(3600) = 0.00125 m/s2. We then use this value to calculate the braking force: F = m*a = 1.25 x (10^-3) x 4 x (10^+8) = 5 x (10^5) N.

JC
Answered by Jack C. Physics tutor

10509 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Convection, conduction and radiation in space


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning