3x^3 -2x^2-147x+98=(ax-c)(bx+d)(bx-d). Find a, b, c, d if a, b, c, d are positive integers

(bx+d)(bx-d)=b^2x^2-d^2(ax-c)(bx+d)(bx-d)=(ax-c)(b^2x^2-d^2)=ab^2x^3-ad^2x-b^2cx^2+cd^2ab^2=3b^2c=2ad^2=147-cd^2=98From equations:a=3/b^2c=2/b^2d^2=49b^2Since a, b, c, d are positive integers, b must be 1. Then a=3, c=2, d=7

LK
Answered by Laura K. Further Mathematics tutor

7406 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the following simultanious equations: zy=28 and 2z-3y=13


Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


How would you differentiate x^x?


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning