3x^3 -2x^2-147x+98=(ax-c)(bx+d)(bx-d). Find a, b, c, d if a, b, c, d are positive integers

(bx+d)(bx-d)=b^2x^2-d^2(ax-c)(bx+d)(bx-d)=(ax-c)(b^2x^2-d^2)=ab^2x^3-ad^2x-b^2cx^2+cd^2ab^2=3b^2c=2ad^2=147-cd^2=98From equations:a=3/b^2c=2/b^2d^2=49b^2Since a, b, c, d are positive integers, b must be 1. Then a=3, c=2, d=7

LK
Answered by Laura K. Further Mathematics tutor

7077 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How would you differentiate x^x?


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Let y = (4x^2 + 3)^4. Find dy/dx.


This is a question from a past paper: https://prnt.sc/r6jnxc


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences