3x^3 -2x^2-147x+98=(ax-c)(bx+d)(bx-d). Find a, b, c, d if a, b, c, d are positive integers

(bx+d)(bx-d)=b^2x^2-d^2(ax-c)(bx+d)(bx-d)=(ax-c)(b^2x^2-d^2)=ab^2x^3-ad^2x-b^2cx^2+cd^2ab^2=3b^2c=2ad^2=147-cd^2=98From equations:a=3/b^2c=2/b^2d^2=49b^2Since a, b, c, d are positive integers, b must be 1. Then a=3, c=2, d=7

LK
Answered by Laura K. Further Mathematics tutor

6835 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


Finding the derivative of a polynomial.


y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


If y=(x^2)*(x-10), work out dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences