Solve the inequality x^3 + x^2 > 6x

Start by moving all the terms to one side of the inequality. In this case it's easiest to move the 6x to the left hand side by subtracting 6x from both sides, so that you are left with x^3 + x^2 - 6x > 0. Then factorise the cubic equation so that you get x(x+3)(x-2) > 0. From this form you can see that x=0 ; x= -3 and x= 2 solve the cubic equation, so these are the points, where the graph of y= x^3 + x^2 - 6x crosses the line y=0 (the x axis). Next sketch the cubic graph and you will be able to see clearly, which values solve the inequality. In this case, since x^3 + x^2 - 6x >0 it will be all the parts of the graph above the x axis, which are -3 < x < 0 and x > 2.

MS
Answered by Miron S. Further Mathematics tutor

6171 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How can the integrating factor method be derived to give a solution to a differential equation?


What is the value of x from (x+2)^2=4


How do I know when I should be using the Poisson distribution?


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences