Solve the inequality x^3 + x^2 > 6x

Start by moving all the terms to one side of the inequality. In this case it's easiest to move the 6x to the left hand side by subtracting 6x from both sides, so that you are left with x^3 + x^2 - 6x > 0. Then factorise the cubic equation so that you get x(x+3)(x-2) > 0. From this form you can see that x=0 ; x= -3 and x= 2 solve the cubic equation, so these are the points, where the graph of y= x^3 + x^2 - 6x crosses the line y=0 (the x axis). Next sketch the cubic graph and you will be able to see clearly, which values solve the inequality. In this case, since x^3 + x^2 - 6x >0 it will be all the parts of the graph above the x axis, which are -3 < x < 0 and x > 2.

MS
Answered by Miron S. Further Mathematics tutor

7233 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


Find the determinant of matrix M. [3]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning