If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.

First we must establish how to differentiate terms individually. This is done by using the simple method of multiplying the X by the power, and subtracting one away from the power. To make it easier we will differentiate each term individually and then put the equation back together at the end. 1. x^2 2x^(2-1) =2x 2. 9x 19x^(1-1) = 9x^0 =91 = 9 3. 8 08^(0-1) = 0 Therefore dy/dx = 2x+9 This would be useful if the gradient needed to be found. To find the gradient at a point all you need to do is substitute in the X value.

TT
Answered by Tamara T. Further Mathematics tutor

3143 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How do you use derivatives to categorise stationary points?


y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning