Find the general solution of: y'' + 4y' + 13y = sin(x)

First we find the auxilary equation by substituting y with m^0, y' with m^1 and y'' with m^2. We get m^2 + 4m + 13 and find the roots using the differential equation, m = (-4 +- (16-4x1x13)^0.5)/(2x1).

From this we get complex roots m = -2 + 3i and m = -2 - 3i. Now we solve the homogenous form using these roots, y = e^(-2x) (Acos(3x) + Bsin(3x)).

So we have solved the differential equation for when the right hand side is equal to zero but we must solve it for when the RHS is equal to sin(x) so we need to take y = psin(x) + qcos(x) and find y' and y'' to substitute into the LHS. So y' = -psin(x) + qcos(x) and y'' = -pcos(x) - qsin(x).

By comparing coefficients of the substitued LHS and the RHS we get, (-pcos(x) - qsin(x)) + 4(-psin(x) + qcos(x)) + 13(pcos(x) + qsin(x)) == sin(x). After comparing coefficients and solving the resulting simultaneous equation we find, p = -1/40 and q = 3/40.

Now we just put all the parts together to obtain the general solution to the equation, y = e^(-2x) (Acos(3x) + Bsin(3x)) - (1/40)cos(x) + (3/40)sin(x).

TT
Answered by Tom T. Further Mathematics tutor

9162 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


What is the value of x from (x+2)^2=4


Write 1 + √3i in modulus-argument form


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning