What is sin(x)/x for x =0?

I'm going to show the answer to this question in two different ways. - The first is perhaps more obvious but the second is much more elegant.Taylor series expansion: Using Taylor expansion (or your trusty A level formula sheet) you can show that sin(x) = x - x^3/3! + x^5/5! + Re ( (-i)^n * x^n / n! )Thus dividing through by x:sin(x)/x = 1 - x^2/3! + x^4/5! +...if we then replace x by 0:sin(0)/0 = 1 - 0 + 0 +... where ... here is all 0.thus sin(0) / 0 = 1. The other much faster way of doing this is using l'Hopital's rule which states that for a limit lim (f(x)/g(x)) = lim (f'(x) / g'(x)) for the same limit. Thus lim[x-> 0] (sin(x) / x) = lim[x->0] (cos x / 1) = 1.

VP
Answered by Vandan P. Further Mathematics tutor

40489 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences