What is sin(x)/x for x =0?

I'm going to show the answer to this question in two different ways. - The first is perhaps more obvious but the second is much more elegant.Taylor series expansion: Using Taylor expansion (or your trusty A level formula sheet) you can show that sin(x) = x - x^3/3! + x^5/5! + Re ( (-i)^n * x^n / n! )Thus dividing through by x:sin(x)/x = 1 - x^2/3! + x^4/5! +...if we then replace x by 0:sin(0)/0 = 1 - 0 + 0 +... where ... here is all 0.thus sin(0) / 0 = 1. The other much faster way of doing this is using l'Hopital's rule which states that for a limit lim (f(x)/g(x)) = lim (f'(x) / g'(x)) for the same limit. Thus lim[x-> 0] (sin(x) / x) = lim[x->0] (cos x / 1) = 1.

VP
Answered by Vandan P. Further Mathematics tutor

40658 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express the complex number (1+i)/(1-i) in the form x+iy


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


Find the integral of f(x)= x^3 + 2x^2 + 1


Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences