The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.

Firstly, we must clearly set out the information we have. The particle in question is a proton, which has a mass of 1.67e-27 kg, and a charge of 1.6e-19 C. The path it takes has a circumference of 27000m, meaning the radius of its path is (27000/(2pi)), which is 4297m. The speed it is travelling at is c/10, or 3e7 m/s. The particle takes a circular path, meaning there must be a centripetal force acting on it, and this is given by F = (mv^2)/r. In addition the charged particle is moving through a magnetic field, which means it experiences a force perpendicular to its travel, given by F = Bqv, where B is the magnetic flux density, q is the charge of the particle, and v is the velocity it is travelling at. This is the only force that can provide the centripetal force required for the proton to maintain its path, meaning the above two equations must be equal: (mv^2)/r = Bqv. We want to find the value of B, so rearranging the above equation, we find that: B=(mv)/(rq) =(1.67e-27 * 3e7)/(4297 * 1.6e-19) = 7.29e-5 T

Answered by Aashish M. Physics tutor

6053 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car moves from rest and accelerates uniformly at 4m/s/s, how far will it have traveled after 10 seconds?


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


Resolving the forces for an object suspended on two strings.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy