Can you express 3 + 4j in polar form?

First, let's imagine the point 3 + 4j as a point on an Argand diagram, with coordinates 3,4. The polar form of an imaginary number is in the form re^(jθ), where r is the modulus of the number (the distance between the point on the graph and the origin), and θ is the argument (the angle the point makes with the horizontal). In order to find r, we can simply use Pythagoras' Theorem, giving us the answer r = 5. To find θ, we must use trigonometry, identifying the angle θ as the inverse tangent of (4/3), which is equal to 0.927. Therefore the angle θ is 0.927. This means the polar form of 3 + 4j is 5e^0.927jθ

WT
Answered by Walter T. Further Mathematics tutor

14909 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?


How do I express complex numbers in the form reiθ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences