There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.

You must carefully draw a diagram. The key to this question is to find from what perspective you should view it. The easiest way is to see that B wants to accelerate due to the weight of C. This is unaffected by the motion of A. We simply need to accelerate A at the same rate that B would accelerate so there will be no relative motion and so B wont fall off. We have the acceleration of b = (Mc*g)/(Mb+Mc) So that is what the acceleration of A should be.

Answered by Sean O. Physics tutor

1588 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


How can I measure the orbital period of a satellite around Earth?


Why does a skydiver go through two different terminal velocities?


Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy