There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.

You must carefully draw a diagram. The key to this question is to find from what perspective you should view it. The easiest way is to see that B wants to accelerate due to the weight of C. This is unaffected by the motion of A. We simply need to accelerate A at the same rate that B would accelerate so there will be no relative motion and so B wont fall off. We have the acceleration of b = (Mc*g)/(Mb+Mc) So that is what the acceleration of A should be.

SO
Answered by Sean O. Physics tutor

2206 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The vehicle accelerates horizontally from rest to 27.8 m s–1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider has a mass of 82 kg. 1. Calculate the average acceleration during the 4.6 s time interval.


Calculate the frequency of a simple pendulum of length 950 mm. Give answer to an appropriate number of significant figures.


A geostationary satellite is orbiting Earth, a) What is meant by a geostationary orbit? b) Calculate the height at which the satellite orbits above the surface of the Earth. The radius of the Earth is 6400km and its mass is 6x10^24 kg.


What conditions are required for simple harmonic motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning