There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.

You must carefully draw a diagram. The key to this question is to find from what perspective you should view it. The easiest way is to see that B wants to accelerate due to the weight of C. This is unaffected by the motion of A. We simply need to accelerate A at the same rate that B would accelerate so there will be no relative motion and so B wont fall off. We have the acceleration of b = (Mc*g)/(Mb+Mc) So that is what the acceleration of A should be.

SO
Answered by Sean O. Physics tutor

2273 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)


Why is the classical model of light insufficient in explaining the photoelectric effect?


What is EMF? How do we test for it?


A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning