There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.

You must carefully draw a diagram. The key to this question is to find from what perspective you should view it. The easiest way is to see that B wants to accelerate due to the weight of C. This is unaffected by the motion of A. We simply need to accelerate A at the same rate that B would accelerate so there will be no relative motion and so B wont fall off. We have the acceleration of b = (Mc*g)/(Mb+Mc) So that is what the acceleration of A should be.

Answered by Sean O. Physics tutor

1572 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?


Can you talk me through how to solve problems on projectiles? I always get confused


Bismuth-208, which has an atomic mass of 208u and 83 protons in the nucleus, decays through the emission of 2 alpha particles and a beta-positive particle. What isotope results from this decay?


What is the minimum initial velocity necessary for an object to leave Earth?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy