Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).

Firstly, note that the question only asks for the general solution (G.S.) to the equation, not for the whole solution. Now we have established what we need to find, construct the auxiliary equation. For this ODE, it will be k^2 - 2kx + 1 = 0. Solving this auxiliary equation, we find we have (k - 1)^2 = 0 and a repeated root solution of k = 1. Now, the form of the G.S. for repeated roots is (A + Bt)e^(kt) and substituting our value for k, we find the general solution for this ODE is x = (A + Bt)e^(t).

AB
Answered by Amy B. Further Mathematics tutor

3962 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


A curve has the equation (5-4x)/(1+x)


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences