Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).

Firstly, note that the question only asks for the general solution (G.S.) to the equation, not for the whole solution. Now we have established what we need to find, construct the auxiliary equation. For this ODE, it will be k^2 - 2kx + 1 = 0. Solving this auxiliary equation, we find we have (k - 1)^2 = 0 and a repeated root solution of k = 1. Now, the form of the G.S. for repeated roots is (A + Bt)e^(kt) and substituting our value for k, we find the general solution for this ODE is x = (A + Bt)e^(t).

AB
Answered by Amy B. Further Mathematics tutor

4488 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning