Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)

First, find the formula for the time taken, t, for the projectile to travel the distance. Using the fact that the projectile reaches a velocity of zero at a time of 0.5t when at its maximum height and acceleration due to gravity is negative, the time of flight is dependent on vertical values so; v=u+at => 0=Vsinθ-g(0.5t) => t=(2Vsinθ)/g. Now for the range, also know as maximum displacement, substitute the time taken into the distance, x, formula with horizontal values; x=ut => x=Vcosθt => x(max)=Vcosθ((2Vsinθ)/g)) => x(max)=Range=(2sinθcosθ(V)^2)/g. Using trigonometric identity sin2θ=2sinθcosθ, we have Range=(sin2θ(V)^2)/g. To find the motion of the projectile, use the equation for displacement s=ut+0.5a(t)^2, therefore in vertical terms y=Vsinθ(t)-0.5g(t)^2, and thus insert the horizontal time taken which is derived from x=Vcosθt => t=x/Vcosθ, so the path the projectile follows on the x-y plane is y=Vsinθ(x/Vcosθ)-(0.5g(x)^2)/(Vcosθ)^2. Tidying this up, and using the fact that secθ=1/cosθ and tanθ=sinθ/cosθ; this means y=xtanθ-g((xsecθ)^2)/2(V)^2. Since the equation is in the form y=ax-bx^2, for some a,b, the motion of the projectile must be parabolic. And we are done.

OD
Answered by Oskar D. Physics tutor

5896 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


Define the work function of a metal


If the force between two point charges of charge 'Q1' and 'Q2' which are a distance 'r' apart is 'F' then what would the force be if the charge of 'Q1' is tripled and the distance between them doubled?


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning