Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)

First, find the formula for the time taken, t, for the projectile to travel the distance. Using the fact that the projectile reaches a velocity of zero at a time of 0.5t when at its maximum height and acceleration due to gravity is negative, the time of flight is dependent on vertical values so; v=u+at => 0=Vsinθ-g(0.5t) => t=(2Vsinθ)/g. Now for the range, also know as maximum displacement, substitute the time taken into the distance, x, formula with horizontal values; x=ut => x=Vcosθt => x(max)=Vcosθ((2Vsinθ)/g)) => x(max)=Range=(2sinθcosθ(V)^2)/g. Using trigonometric identity sin2θ=2sinθcosθ, we have Range=(sin2θ(V)^2)/g. To find the motion of the projectile, use the equation for displacement s=ut+0.5a(t)^2, therefore in vertical terms y=Vsinθ(t)-0.5g(t)^2, and thus insert the horizontal time taken which is derived from x=Vcosθt => t=x/Vcosθ, so the path the projectile follows on the x-y plane is y=Vsinθ(x/Vcosθ)-(0.5g(x)^2)/(Vcosθ)^2. Tidying this up, and using the fact that secθ=1/cosθ and tanθ=sinθ/cosθ; this means y=xtanθ-g((xsecθ)^2)/2(V)^2. Since the equation is in the form y=ax-bx^2, for some a,b, the motion of the projectile must be parabolic. And we are done.

OD
Answered by Oskar D. Physics tutor

5540 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does the Photoelectric Effect lead to the conclusion that classical physics cannot be all of physics?


A water jet starts at a point X and reaches its maximum height at a point Y. Air resistance has a negligible effect on the motion of the water jet. (i) State the direction of the force acting on the jet at Y. (1 mark)


Describe the interaction that is responsible for keeping protons and neutrons together in a stable nucleus.


Suggest which particles will be emitted as K-40 decays to Ca-39:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences