Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?

Let M be a 3x3 matrix s.t. M= |a b c| |g h i| |d e f|

Then Det(M)= a(Det(e,f,h,i))-b(Det(d,f,g,i))+c(Det(d,e,g,h).

Given that the determinant of a 2x2 matrix such as (e,f,h,i) is = ei-fh. The solution is; Det(M)=a(ei-fh)-b(di-fg)+c(dh-eg).

Since the inverse of a matrix, M^-1 = 1/Det(M) * Adj(M), the inverse does not exist when Det(M)=0.

OD
Answered by Oskar D. Further Mathematics tutor

4148 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


How do I solve a simultaneous equation with more unknowns than equations?


Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


How can I find the explicit formula for the inverse of sinh?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences