Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?

Let M be a 3x3 matrix s.t. M= |a b c| |g h i| |d e f|

Then Det(M)= a(Det(e,f,h,i))-b(Det(d,f,g,i))+c(Det(d,e,g,h).

Given that the determinant of a 2x2 matrix such as (e,f,h,i) is = ei-fh. The solution is; Det(M)=a(ei-fh)-b(di-fg)+c(dh-eg).

Since the inverse of a matrix, M^-1 = 1/Det(M) * Adj(M), the inverse does not exist when Det(M)=0.

OD
Answered by Oskar D. Further Mathematics tutor

4453 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


Differentiate arcsin(2x) using the fact that 2x=sin(y)


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences