How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

MW
Answered by Matthew W. Physics tutor

8098 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the gravitational force between two steel spheres of radius 10 meters and density 8000 kilograms per meter cubed


If two cars are moving, labelled car A and car B. Car A moves at 15 m/s and B at 10 m/s but car B also accelerated at 2 m/s/s. If the two both travel for ten seconds, which car will travel further?


A body is moving at 70km/h and has a mass of 130kg, calculate its maximum kinetic energy.


Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning