How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

MW
Answered by Matthew W. Physics tutor

8547 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Light with a frequency of 200nm is shone on a sodium plate with a work function of 2.28eV and electrons start escaping the surface of the plate due to the photoelectric effect. What is the maximum kinetic energy of one of these electrons in eV?


Experimentally, how would you calculate the Young's modulus of a material?


Calculate the frequency of a simple pendulum of length 950 mm. Give answer to an appropriate number of significant figures.


When does a pendulum bob move fastest and why?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning