How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

MW
Answered by Matthew W. Physics tutor

7579 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A sample of pure gold has a density of 19300 kgm^-3. If the density of a gold nucleus is 1.47x10^17Kgm^-3, discuss what this implies about the structure of the gold atom. [4 marks]


A ball is thrown in the air with velocity of 50.0 m/s, assuming no air resistance calculate its maximum height.


Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning