How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

MW
Answered by Matthew W. Physics tutor

8244 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the minimum initial velocity necessary for an object to leave Earth?


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


A ball is released from stationary at a great height. Explain how the forces acting on it change before it hits the ground and how these forces affect the velocity of the ball.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning