The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)

The volume of revolution, V, is given as 2π∫ydx Substituting in the equation and limits gives as follows: V = 2π∫2e^2x dx between 0 and 1 Integrating this gives V = 2π[e^2x] between 0 and 1 Applying the limits gives V = 2π(e^2-e^0). As e^0 = 1, V=2π(e^2-1), which is the given answer.

MC
Answered by Michael C. Further Mathematics tutor

7388 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


Given z=cosx+isinx, show cosx=1/2(z+1/z)


Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning