My son was blown away by his first tutorial with Jamie. He loved Jamie's enthusiasm and said that everything was explained so well that concepts he's found difficult for a term and a half at school were quickly made clear. Also really liked the way that Jamie kept testing his understanding with questions. Fantastic, many thanks.

Tanya, Parent from Bucks

Why limit yourself to someone who lives nearby, when you can choose from tutors across the UK?

By removing time spent travelling, you make tuition more convenient, flexible and affordable

We've combined live video with a shared whiteboard, so you can work through problems together

All your tutorials are recorded. Make the most out of your live session, then play it back after

Usually we cover both subject knowledge and exam technique, although that can change depending on each individual student. Then we go through diagrams, and they ask questions, and we go from there.

Lots of students say that the classes are too big in school, or that they don't have time to ask teachers after lessons. In my tutorials, we take time to explore things in a little in a bit more detail.

I always look up the board my students are taking so the lessons are really relevant. Then we go through past papers or set texts, whatever the student finds helpful.

I use the shared whiteboard. We make diagrams together and label them, and often the student prints it off because they know it's right and they completely understand it.

After tutoring one girl went and told all her friends the new explanation I gave her. And she was so excited about what she wrote in the exam she emailed me immediately afterwards.

There was one girl who had her exam on Monday. She wanted tuition on Friday, Saturday and Sunday beforehand. It was very intense, but she said the exam went well.

We can compute this integral in two parts: we integrate (8x^3) first then integrate 4, and reach our final answer be adding together our two results. Integrating 4 is the easiest as 4 is just a constant - hence we get 4x by increasing the power of x by 1. To integrate (8x^3), we first increase the power of x by 1 to get (x^4), then we need to find a constant 'a' such that 4*a=8. Hence a=2. So the integral of (8x^3) is (2x^4). Adding our two results together gives (2x^4+4x) and, as this is an indefinite integral (there are no bounds on it), we must add a constant c on the end. Hence our final solution is (2x^4+4x+c). We can check this result by differentiating it to see if we get the equation in the question.

We have to use the chain rule here. If we set u to the inside of the bracket, u = x^2 + 3 and differentiating we get du/dx = 2x.
Now the original expression becomes y = u^2. Differentiating this with respect to x, dy/dx = du/dx * dy/du using the chain rule.
dy/du = 2u and du/dx is 2x so the final answer dy/dx = 2x*2(x^2 + 3) = 4x(x^2 + 3).

Answered by Matthew H.

Studies Computer Science and Maths at Exeter

This is a handy trick for quadratic equations ax^2 + bx + c = 0.
e.g. (x^2 + 5x + 6). So a = 1, b = 5 and c = 6.
To complete the square, let x^2 + 5x + 6 = 0. Then, take 6 to the other side to get x^2 + 5x = -6.
Now focus on x^2 + 5x. You need to divide 5 by 2 ( = 2.5) and write in the form (x + (b/2))^2 - (b/2)^2 = -6. So you get (x + 2.5)^2 - (2.5)^2 = -6. This equals to (x + 2.5)^2 = 0.25 as (2.5)^2 - 6 = 0.25. Then rearrange for x. (x + 2.5) = +- 0.5. So x = -3 and x = -2.

In order to complete this question we need to use the quotient rule (i.e. if an equation is of the form h(x)=f(x)/g(x) then h'(x)=(g(x)*f'(x)-g'(x)*f(x))/g(x)^2).In our example f'(x)=cos(x),g'(x)=15x^2, therefore dy/dx=(5x^3*cos(x)-15x^2*sin(x))/25x^6

Answered by Kirill Z.

Studies Mathematics at Kings, London

A stationary point is a point on the function where the gradient is zero. The phrase 'stationary point' coming up in a question always indicates that differentiation may be useful to solve it. In this case, the derivative of the function, often expressed as dy/dx, is x^2 + x - 6. As dy/dx is the gradient of the function, set it equal to zero to find stationary points. The easiest way to solve
x^2 + x - 6 = 0 is by factorisation. So (x+3)(x-2)=0 gives the solutions x=2 , x=-3. Sub these back in to the original equation to find the corresponding y values. For x=2, y=23/3. For x=-3, y=57/2. The stationary points are therefore at (2, 23/3) and (-3,57/2).

Answered by Matthew H.

Studies Chemical Engineering via Natural Sciences at Cambridge

We use differentiation to generally find the rate of change for a function. This could also be interpreted as finding the gradient of a curve. e.g. y = x ^ 2.
If you consider the curve, it has a different gradient at various points. We could draw a tangent at the point however a more accurate answer would be to differentiate.
There is a simple method to differentiate curves. We denote the differential of y as dy/dx.
Please feel free to message me to ask more details.

Company information

Popular requests

Cookies:

Are you there? â€“ We have noticed a period of inactivity, click yes to stay logged in or you will be logged out in 2 minutes

Your session has timed out after a period of inactivity.

Please click the link below to continue (you will probably have to log in again)

Every tutor on our site is from a **top UK university** and has been** personally interviewed** and ID checked. With over 7 applications for each tutor place, you can rest assured you’re getting the best.

As well as offering **free tutor meetings**, we **guarantee every tutor who has yet to be reviewed on this site,** no matter how much prior experience they have. Please let us know within 48 hours if you’re not completely satisfied and we’ll **refund you in full.**

Every time a student and parent lets us know they have enjoyed a tutorial with a tutor, one 'happy student' is added to the tutor's profile.

mtw:mercury1:status:ok

Version: | 3.29.0 |

Build: | 26ca4c151867 |

Time: | 2017-02-20T18:31:47Z |

Your message has been sent and you'll receive an email to let you know when responds.

Tutors typically reply within 24 hours.

Tutors typically reply within 24 hours.

Thanks , your message has been sent and we’ll drop you an email when replies. You should hear back within 24 hours.

After that, we recommend you set up a free, 15 minute meeting. They’re a great way to make sure the tutor you’ve chosen is right for you.

Thanks , your message has been sent and we’ll drop you an email when replies. You should hear back within 24 hours.

After that, we recommend you set up a free, 15 minute meeting. They’re a great way to make sure the tutor you’ve chosen is right for you.

**Limit reached ***(don't worry though, your email has still been sent)*

Now you've sent a few messages, we'd like to **give the tutors a chance to respond**.

Our team has been notified that you're waiting, but please contact us via

support@mytutor.co.uk or **drop us a call on +44 (0)203 773 6020** if you're in a rush.

**Office hours are 8am to 7pm**, Monday to Friday, and we pick up emails on weekends.

Thanks,

The MyTutor team

**Limit reached ***(don't worry though, your email has still been sent)*

Now you've sent a few messages, we'd like to **give the tutors a chance to respond**.

Our team has been notified that you're waiting, but please contact us via

support@mytutor.co.uk or **drop us a call on +44 (0)203 773 6020** if you're in a rush.

**Office hours are 8am to 7pm**, Monday to Friday, and we pick up emails on weekends.

Thanks,

The MyTutor team

**Limit exceeded ***(Your message will not be sent)*

You should have recieved a notification with your previous message, and **our team have also been notified that you're waiting.**

If you're in a rush, please contact us via support@mytutor.co.uk or **drop us a call on +44 (0)203 773 6020** .

**Office hours are 8am to 7pm**, Monday to Friday. We also pick up emails on weekends.

Thanks,

The MyTutor team

**Limit exceeded ***(Your message will not be sent)*

You should have recieved a notification with your previous message, and **our team have also been notified that you're waiting.**

If you're in a rush, please contact us via support@mytutor.co.uk or **drop us a call on +44 (0)203 773 6020** .

**Office hours are 8am to 7pm**, Monday to Friday. We also pick up emails on weekends.

Thanks,

The MyTutor team

If you're taking A-Level Maths - well done to you. It's one of the trickier A-levels but also one of the most well respected, and it will set you up for all sorts of career paths. That said, it can be a surprising jump up from the Maths you've done before. And because the course progresses so quickly, it's easy to feel like you're getting left behind.

With one-to-one online support from a Maths tutor, you can spend time focusing on the topics you want to work on.Whether it's differentiation that's got you in a pickle, or logarithms that are giving you trouble, our tutors are on hand to help. So by the time it comes round to your exams, you'll feel confident, well prepared, and able to achieve the results you want.