Why doesn't the magnetic force change the velocity of a particle?

Well actually, it does. Remember that the velocity is a vector and so is the force. Since F=ma, the acceleration due to a given force points in the same direction as the force itself. The magnetic force is perpendicular to the direction of motion, and hence so will the acceleration. And we know that when the acceleration is perpendicular to the velocity of a particle, it undergoes uniform circular motion. So, the magnitude of the velocity remains unchanged when the particle is acted upon solely by a magnetic force. Yet, as we just said, the velocity is a vector and hence it is defined by both is magnitude and direction. Since the direction changes, the velocity vector also does change. We call such an acceleration (which is always perpendicular to the velocity) normal or centripetal, as it makes the particle circle around a certain point.

AS
Answered by Ana S. Physics tutor

3101 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?


What are the 8 forms of energy? How can I remember them?


A bomb of mass 34kg, at rest is detonated. The explosion splits the bomb into two pieces, one of mass 13kg, which is thrown to the left at a velocity of 28 m/s. What is the velocity of the second piece?


Explain the different types of wave.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning