How can the first order kinematic (SUVAT) equations be derived?

We start with the following two observations about an object undergoing constant acceleration. First, its acceleration is equal to the change in its velocity over time, hence,

a=(v-u)/t.

Rearranging gives the first SUVAT equation,

v=u+at.

Secondly, we observe that the average velocity of the object is equal to the distance it travels over time. The average velocity of an object undergoing constant acceleration is the average of its initial and final velocities, hence,

(u+v)/2=s/t.

Substituting the value of v in the first SUVAT equation, we have,

(2u+at)/2=s/t.

Rearranging, we have the second SUVAT equation,

s=ut+(at^2)/2.

To derive the third equation, the original equations are rearranged to give,

v-u=at

and

v+u=2s/t.

These equations can be multiplied to give,

(v+u)(v-u)=2as.

Multiplying out the brackets and rearranging gives the third SUVAT equation,

v^2=u^2+2as.

PT
Answered by Peter T. Physics tutor

12789 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is resistivity in S.I. units?


You are in a vacuum chamber, and you drop a feather and a bowling ball (initially at rest) from a great height. Which will hit the ground first?


Can you explain the photoelectric effect?


From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning