How can the first order kinematic (SUVAT) equations be derived?

We start with the following two observations about an object undergoing constant acceleration. First, its acceleration is equal to the change in its velocity over time, hence,

a=(v-u)/t.

Rearranging gives the first SUVAT equation,

v=u+at.

Secondly, we observe that the average velocity of the object is equal to the distance it travels over time. The average velocity of an object undergoing constant acceleration is the average of its initial and final velocities, hence,

(u+v)/2=s/t.

Substituting the value of v in the first SUVAT equation, we have,

(2u+at)/2=s/t.

Rearranging, we have the second SUVAT equation,

s=ut+(at^2)/2.

To derive the third equation, the original equations are rearranged to give,

v-u=at

and

v+u=2s/t.

These equations can be multiplied to give,

(v+u)(v-u)=2as.

Multiplying out the brackets and rearranging gives the third SUVAT equation,

v^2=u^2+2as.

PT
Answered by Peter T. Physics tutor

13828 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does gravitational potential energy have a negative value?


What is the Photoelectric effect?


A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning