How can the first order kinematic (SUVAT) equations be derived?

We start with the following two observations about an object undergoing constant acceleration. First, its acceleration is equal to the change in its velocity over time, hence,

a=(v-u)/t.

Rearranging gives the first SUVAT equation,

v=u+at.

Secondly, we observe that the average velocity of the object is equal to the distance it travels over time. The average velocity of an object undergoing constant acceleration is the average of its initial and final velocities, hence,

(u+v)/2=s/t.

Substituting the value of v in the first SUVAT equation, we have,

(2u+at)/2=s/t.

Rearranging, we have the second SUVAT equation,

s=ut+(at^2)/2.

To derive the third equation, the original equations are rearranged to give,

v-u=at

and

v+u=2s/t.

These equations can be multiplied to give,

(v+u)(v-u)=2as.

Multiplying out the brackets and rearranging gives the third SUVAT equation,

v^2=u^2+2as.

PT
Answered by Peter T. Physics tutor

13108 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Draw and describe the major points of a typical stress-strain graph for a metal.


A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


Why does light change direction when it hits a surface with a different refractive index?


If a bulb has a current of 20mA and voltage of 5V, and the current cost of electricity is £3 for a kW/hour. How much money would you spend to power the bulb for 8 hours? Are these good estimates for the current, voltage and cost of electricity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning