How can the first order kinematic (SUVAT) equations be derived?

We start with the following two observations about an object undergoing constant acceleration. First, its acceleration is equal to the change in its velocity over time, hence,

a=(v-u)/t.

Rearranging gives the first SUVAT equation,

v=u+at.

Secondly, we observe that the average velocity of the object is equal to the distance it travels over time. The average velocity of an object undergoing constant acceleration is the average of its initial and final velocities, hence,

(u+v)/2=s/t.

Substituting the value of v in the first SUVAT equation, we have,

(2u+at)/2=s/t.

Rearranging, we have the second SUVAT equation,

s=ut+(at^2)/2.

To derive the third equation, the original equations are rearranged to give,

v-u=at

and

v+u=2s/t.

These equations can be multiplied to give,

(v+u)(v-u)=2as.

Multiplying out the brackets and rearranging gives the third SUVAT equation,

v^2=u^2+2as.

PT
Answered by Peter T. Physics tutor

13445 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?


A golf ball is hit at angle θ to the horizontal, with initial velocity u. Stating an assumption, show that the horizontal distance travelled by the ball is directly proportional to u^2.


Describe how the average density of matter in the universe affects its ultimate fate?


If a vehicle A, 1000kg moving at 5m/s collides with vehicle B, 750kg, moving in the opposite direction at 8m/s assuming no rebound what is the velocity of the vehicles after collision.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning