An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1

The temperature of a body of mass m and specific heat capacity c rises by change in temperature (delta)T when an amount of heat Q is added to it (Q = mc(delta)T). From the equation we see that the change in temperature is simply equal to the heat divided by the mass times the specific heat capacity of copper ((delta)T = Q / m*c). Now we can just plug in the numbers to find the answer. (Note that the mass is not given in SI units and we have to convert it 32.4g = 0.0324kg). From here follows that the increase in temperature is equal to 500 / 0.0324 * 385 or 40.0834, which we can round to 40.1 degrees Celsius.

VB
Answered by Viktoria B. Physics tutor

8845 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the workings behind the Photoelectric effect


What is the Doppler Effect?


How to we work out the speed of an object at a certain point in its trajectory?


Calculate the root mean squared speed for 16g of oxygen gas at 50(deg Celsius) and explain why we use this instead of the average velocity of all the particles.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning