An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1

The temperature of a body of mass m and specific heat capacity c rises by change in temperature (delta)T when an amount of heat Q is added to it (Q = mc(delta)T). From the equation we see that the change in temperature is simply equal to the heat divided by the mass times the specific heat capacity of copper ((delta)T = Q / m*c). Now we can just plug in the numbers to find the answer. (Note that the mass is not given in SI units and we have to convert it 32.4g = 0.0324kg). From here follows that the increase in temperature is equal to 500 / 0.0324 * 385 or 40.0834, which we can round to 40.1 degrees Celsius.

VB
Answered by Viktoria B. Physics tutor

9358 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show Maxwell's equations in free space satisfy the wave equation


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


Why is gravitational potential energy negative?


Calculate the flight time of a ball moving in parabolic motion, with initial velocity 5.0m/s at angle 30 degrees from the horizontal travelling for 23 metres.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning