What are the different forms of complex numbers and how do you convert between them?

Complex numbers have three primary forms: the general form, z=a+ib; the polar form, z=r(cosθ+isinθ); and the exponential form, z=rexp(iθ). To convert from the general form to either form you need to find r and θ: r is known as the modulus of z, by referring to an Argand diagram the modulus of z is the length of the line z=a+ib, so to find the modulus you use Pythagoras. θ is called the argument of z and is found by looking at the trigonometry of the line; the two components of z are the opposite and adjacent so you can use tanθ=b/a and rearrange for θ. To work in reverse it is best to use the polar form of the complex number as you simply set a=rcosθ and b=rsinθ.

PL
Answered by Peter L. Further Mathematics tutor

38053 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Express cos(4x) in terms of powers of cos(x)


Prove that sum(k) from 0 to n is n(n+1)/2, by induction


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning