Is F=ma Newton's 2nd Laws of Motion?

That is a good question. F=ma is a special case of Newton's 2nd Law of Motion . Newton's second law states that: The rate of change of linear momentum is proportional to the applied force and acts in the same direction as the force. Newton's 2nd Law implies F=ma only if the mass of the change of momentum stays constant. Here I will write how you can get F=ma from the second law if the mass stays the same.

Final momentum: P_f=m_f x v_f , m_f is final mass, v_f is final velocity

Initial momentum: P_i=m_i x v_i , m_i is the initial mass, v_i is the initial velocity

now F is proportional to the rate of change of momentum.

F=k x (P_f - P_i)/t

F= k x ( m_f x v_f - m_i x v_i)/t

We know the mass stays the same so m_f=m_i

F= k x ( m_i x v_f - m_i x v_i)/t

Factorise m_i out

F= k x m_i x(v_f - v_i)/t

write m_i =m to make it look nicer

F= k x m x(v_f - v_i)/t

we know v_f = v_i + at from our SUVAT equations so

a = (v_f - v_i)/t by rearranging the equations

Plug this in the equation then we get

F=ma

MZ
Answered by Mohsin Z. Physics tutor

13536 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the photoelectric effect.


What is meant by an excited atom?


Derive Keplers 3rd law


What is the mathematical relationship between the frequencies of musical notes that we perceive identical, but at different octaves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning