Is F=ma Newton's 2nd Laws of Motion?

That is a good question. F=ma is a special case of Newton's 2nd Law of Motion . Newton's second law states that: The rate of change of linear momentum is proportional to the applied force and acts in the same direction as the force. Newton's 2nd Law implies F=ma only if the mass of the change of momentum stays constant. Here I will write how you can get F=ma from the second law if the mass stays the same.

Final momentum: P_f=m_f x v_f , m_f is final mass, v_f is final velocity

Initial momentum: P_i=m_i x v_i , m_i is the initial mass, v_i is the initial velocity

now F is proportional to the rate of change of momentum.

F=k x (P_f - P_i)/t

F= k x ( m_f x v_f - m_i x v_i)/t

We know the mass stays the same so m_f=m_i

F= k x ( m_i x v_f - m_i x v_i)/t

Factorise m_i out

F= k x m_i x(v_f - v_i)/t

write m_i =m to make it look nicer

F= k x m x(v_f - v_i)/t

we know v_f = v_i + at from our SUVAT equations so

a = (v_f - v_i)/t by rearranging the equations

Plug this in the equation then we get

F=ma

MZ
Answered by Mohsin Z. Physics tutor

12551 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A model truck A of mass 1.2 kg is travelling due west with a speed of 0.90 m/s . A second truck B of mass 4.0 kg is travelling due east towards A with a speed of 0.35 m/s .


Describe how the strong nuclear force between nucleons varies with seperation of the nucleons.


Explain how Maxima and Minima occur in Young's double slit experiment


Explain the difference between forced vibration and resonance in an oscillating object.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences