How does circular motion work?

Firstly, let's remember Newton's laws which tell us that in order for something to change direction of motion - like: going around in a circle - a net force needs to be acting on the object. In the case of circular motion, this force is "pulling" the object, e.g. a ball on a string or a car on the road, towards the centre of circle. This causes an acceleration (because F=ma), and so the object is diverted from a straight path along the tangent of the circle, making it curve around the bend. If you will, the object is continuously trying to remain in a straight path, but the force keeps pulling it inwards. This is also why it often feels as though, when you're going around a bend or stand in one of those fairground rides, it feels as though you are being pushed outwards, even though the force is acting towards the centre of the circle. That's because at each instant you - the object in this example - want to continue travelling in a straight path along the tangent of the circle, but the force (e.g. your car seat or the wall of the fairground ride) push you inwards, making it seem like there is a force pushing you to the outside of the circle.

SG
Answered by Stephanie G. Physics tutor

2484 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

From the 2016 OCR B paper A ball is thrown at an angle of 30 Degrees to the horizontal. The initial kinetic energy of the ball is K. Air resistance is negligible. What is the kinetic energy of the ball at the maximum height.


An electron falling from one energy level to another emits a photon of wavelength 550nm. What is the difference between the two energy levels?


The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


A light wave has a wavelength of 420nm, calculate the energy of this wave in joules.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences