Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

2301 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How can I find the equation of a straight line on a graph?


Find the gradient of the line x^2 + 3x - 6 at the point (5,34)


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning