Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

2146 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the following simultanious equations: zy=28 and 2z-3y=13


write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


To differentiate a simple equation: y= 4x^3 + 7x


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning