Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

2054 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


Given f(x)= 8 − x^2, solve f(3x) = -28


How to solve the inequality 1 - 2(x - 3) > 4x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences