Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

1993 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


The curve C has equation f(x) = 4(x^1.5) + 48/(x^0.5) - 8^0.5 for x > 0. (a) Find the exact coordinates of the stationary point of C. (b) Determine whether the stationary point is a maximum or minimum.


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


This is a question from a past paper: https://prnt.sc/r6jnxc


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences