The amplitude of a simple harmonic oscillator has decreased from 40cm to 38cm. What percentage of energy did the harmonic oscillator lose?

It is recommended to start off by converting all given data into SI units to avoid confusion later on. Write down the total energy of the system and that it is conserved: E(tot)= KE+PE and KE=(mv^2)/2; PE=(kx^2)/2. The potential energy is directly proportional to the amplitude, thus it is easy to estimate the change. As for the kinetic energy, the speed is equal to v=wx and thus, the kinetic energy is KE=(mw^2x^2)/2. Find the relationships between kinectic/potential energies of 40 cm and 38cm amplitudes. For an example: PE1/PE2=(kx1^2)/2 * 2/(kx2^2) = x1^2/x2^2 = 1.108. Later it is found that KE1/KE2=PE1/PE2=1.108. Now with all the components gathered it is possible to find the change in total energy of the system: E2(tot)/ E1(tot) = (KE2+PE2) / (KE1+PE1) = (KE2+PE2)/( 1.108(KE2+PE2)) = 0.9100%=90%. The loss of energy is 100%-90%=10%.

IV
Answered by Ignas V. Physics tutor

2478 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A satellite is in orbit of the Earth, and moves at a constant orbital speed of 3055.5m/s. If it is at an altitude of 35786km, calculate the time period for a complete cycle, giving your answer in hours. Answer should be given in in 3 significant figures.


Explain how the resistance of a filament lamp changes as the potential difference across it increase


A car's speed changes from 10m\s to 40m\s in 10 seconds. What is its acceleration?


What is electricity


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning