Explain why the enthalpy of lattice dissociation of potassium oxide is less endothermic than that of sodium oxide.

Lattice dissociation enthalpy is the enthalpy change when one mole of a gaseous ionic lattice dissociates into isolated gaseous ions. The process is endothermic because energy is required to overcome the electrostatic attraction between oppositely charged ions. Sodium and potassium ions both have the same charge (+1) but the potassium ion is larger so the electrostatic forces of attraction are weaker in potassium oxide. Hence less energy is required to separate the ions making the enthalpy of lattice dissociation less endothermic.

LJ
Answered by Louise J. Chemistry tutor

25455 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Calculate the mass, in grams, of CH3CH2NH2 produced from 32.9 g of CH3CH2I reacting with an excess of NH3 assuming a 70.0% yield.


Why does Benzene require a catalyst to react with Bromine whereas Phenol does not?


Define ferromagnetism, paramagnetism and diamagnetism, and determine whether the following complexes a) AgCl b) [Fe(CN)6]4- c) [Mn(CN)6]4- d) Co(H2O)6Cl2 are ferromagnetic, diamagnetic or paramagnetic giving a full justification for your reasoning.


How does electrophilic aromatic substitution occur?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning