Explain why the enthalpy of lattice dissociation of potassium oxide is less endothermic than that of sodium oxide.

Lattice dissociation enthalpy is the enthalpy change when one mole of a gaseous ionic lattice dissociates into isolated gaseous ions. The process is endothermic because energy is required to overcome the electrostatic attraction between oppositely charged ions. Sodium and potassium ions both have the same charge (+1) but the potassium ion is larger so the electrostatic forces of attraction are weaker in potassium oxide. Hence less energy is required to separate the ions making the enthalpy of lattice dissociation less endothermic.

LJ
Answered by Louise J. Chemistry tutor

24904 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Work out the number of electrons, protons and neutrons in Silicon 29 isotope.


Which element, Na or Mg is likely to have the higher melting point? Give reasons for your choice


Why does the bromine become polarised in HBr during electrophilic addition


A buffer solution was formed by mixing 20.0 cm^3 of sodium hydroxide solution of concentration 0.100 mol dm^–3 with 25.0 cm^3 of ethanoic acid of concentration 0.150 mol dm^–3. CH3COOH + NaOH---CH3COONa + H2O Calculate the pH of this buffer solution.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning