A ball is initially at rest and is dropped from a height of 10m. Calculate the velocity of the ball when it reaches the ground

For this we need to use a SUVAT equation. S=displacement U=initial velocity V=final velocity A=acceleration T=time In the question we are give U=0m/s since the ball is at rest to start with Since the ball is falling under gravity A=9.8m/s^2 The ball falls 10m so S = 10m We want to calculate V so the equation we use is V^2 = U^2 +2AS U=0 so V^2 = 2AS and V = sqrt(2109.8) = sqrt(196) = 14m/s Note, in this question we set the downwards direction as positive since the final velocity, displacement and acceleration were all in this direction.

CG
Answered by Catherine G. Physics tutor

10147 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Use band theory to explain the changes in the resistance of an intrinsic semiconductor as temper changes.


An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?


In a fluorescent tube, how are the atoms in the tube excited?


How do stars form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences