Answers>Maths>IB>Article

How do I integrate the volume of revolution between 0 and pi of y=sin(x)?

To integrate the volume of revolution first imagine a thin disk around the x-axis which we want to know the volume of: Volume=area x height. The area of a circle is given by pi r^2 and in our case let us use the height of dx. Hence the volume= pi  r2  dx. Now we will use the radius at each point as the y-value at that point, hence volume = pi y^2 dx = pi sin^2(x) dx. We will integrate this between the limits using the identity sin^2(x)=1/2 (1 - cos(2x)). Hence the volume of integration is given by V=pi/2 integral{0->pi} (1-cos(2x))dx = pi/2*[x -1/2 sin (2x)]{x=0 -> pi} = pi/2*(pi - 0 - (0-0)) = pi^2/2

LC
Answered by Luke C. Maths tutor

4041 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

In a lottery, 6 numbered balls are drawn from a pool of 59. Calculate the probability of scoring a jackpot. There used to be 49 balls in the pool. Calculate by how much the addition of 10 balls has decreased the probability of scoring a jackpot


How do i solve simultaneous equation with more than two equations and two unknowns?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning