Answers>Maths>IB>Article

How do I integrate the volume of revolution between 0 and pi of y=sin(x)?

To integrate the volume of revolution first imagine a thin disk around the x-axis which we want to know the volume of: Volume=area x height. The area of a circle is given by pi r^2 and in our case let us use the height of dx. Hence the volume= pi  r2  dx. Now we will use the radius at each point as the y-value at that point, hence volume = pi y^2 dx = pi sin^2(x) dx. We will integrate this between the limits using the identity sin^2(x)=1/2 (1 - cos(2x)). Hence the volume of integration is given by V=pi/2 integral{0->pi} (1-cos(2x))dx = pi/2*[x -1/2 sin (2x)]{x=0 -> pi} = pi/2*(pi - 0 - (0-0)) = pi^2/2

LC
Answered by Luke C. Maths tutor

3863 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)


Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences