Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2

divide through by 2x to get: dy/dx + 2y/x = 4x         this is now in the form of dy/dx + P(x)y = Q(x)

intergrating factor = exp( integral(P(x)) dx ) = exp( integral(2/x) dx ) = exp( 2 ln(x) ) = x2

therefore d( (x2)y )/dx = 4 x3  ->  (x2)y = integral ( 4x^3 ) dx = x4

therefore y = x2

TE
Answered by Tom E. Further Mathematics tutor

6770 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


If the complex number z = 5 + 4i, work out 1/z.


Find the square root of complex number 3 + 4i


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences