Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2

divide through by 2x to get: dy/dx + 2y/x = 4x         this is now in the form of dy/dx + P(x)y = Q(x)

intergrating factor = exp( integral(P(x)) dx ) = exp( integral(2/x) dx ) = exp( 2 ln(x) ) = x2

therefore d( (x2)y )/dx = 4 x3  ->  (x2)y = integral ( 4x^3 ) dx = x4

therefore y = x2

TE
Answered by Tom E. Further Mathematics tutor

7184 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the general solution of a second order differential equation?


Express (X²-16)/(X-1)(X+3) in partial fractions


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning