Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2

divide through by 2x to get: dy/dx + 2y/x = 4x         this is now in the form of dy/dx + P(x)y = Q(x)

intergrating factor = exp( integral(P(x)) dx ) = exp( integral(2/x) dx ) = exp( 2 ln(x) ) = x2

therefore d( (x2)y )/dx = 4 x3  ->  (x2)y = integral ( 4x^3 ) dx = x4

therefore y = x2

TE
Answered by Tom E. Further Mathematics tutor

7117 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


Find all the cube roots of 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning