Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2

divide through by 2x to get: dy/dx + 2y/x = 4x         this is now in the form of dy/dx + P(x)y = Q(x)

intergrating factor = exp( integral(P(x)) dx ) = exp( integral(2/x) dx ) = exp( 2 ln(x) ) = x2

therefore d( (x2)y )/dx = 4 x3  ->  (x2)y = integral ( 4x^3 ) dx = x4

therefore y = x2

TE
Answered by Tom E. Further Mathematics tutor

6995 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


Differentiate arcsin(2x) using the fact that 2x=sin(y)


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning