Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

HL
Answered by Harry L. Further Mathematics tutor

6858 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


explain the eigenvalue problem


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning