Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

HL
Answered by Harry L. Further Mathematics tutor

6619 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


Find the cube roots of unity.


Prove by induction that n^3+5n is divisible by 3 for every natural number.


Find the set of values of x for which (x+4) > 2/(x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning