Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

HL
Answered by Harry L. Further Mathematics tutor

6020 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the matrix A is non-singular for all real values of a


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


How can I find the explicit formula for the inverse of sinh?


Given M = [[-2,6],[1,3]], find P and D such that M = PDP^(-1) where D is a diagonal matrix


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning