Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

HL
Answered by Harry L. Further Mathematics tutor

6353 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express cos5x in terms of increasing powers of cosx


What is the polar form of the equation: x^2+y^2 =xy+1


Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning