A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?

The first step for this question is to find out how much energy is absorbed by the electron above its work function. This is found with the kinetic energy equation: K.E.=1/2mv^2 The mass of an electron is 9.1x10^-31. Using this in the above equation finds the kinetic energy to be:          K.E=0.59.1x10^-31(5x10^5)^2= 1.14x10^-19 J The kinetic energy is the energy above the work function. The energy provided from the photon of light is calculated with: E=(h*c)/L where E is the energy, h is the planck constant, c is the speed of light, and L is the wavelength.Inputting the correct values into the above equation gives: E=6.63 x 10^-34 x 3.0 x 10^8 / 5.9 x 10^-7= 3.37x10-19 J Finally, the work function can be found by subtracting the kinetic energy from the energy provided by the photon to give: W.F.= (3.37-1.14)x10^-19= 2.23x10^-19 J

BJ
Answered by Bevan J. Physics tutor

2454 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.


What is electromotive force (emf) and how can the emf of a battery be measured?


"An inclined plane at an angle of 25 degrees to the horizontal has a pulley at its top. A 30kg block on the plane is connected to a freely hanging 20kg block by means of a cord passing over the pulley. From rest how far will the 20kg block fall in 2s?


A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences