A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?

The first step for this question is to find out how much energy is absorbed by the electron above its work function. This is found with the kinetic energy equation: K.E.=1/2mv^2 The mass of an electron is 9.1x10^-31. Using this in the above equation finds the kinetic energy to be:          K.E=0.59.1x10^-31(5x10^5)^2= 1.14x10^-19 J The kinetic energy is the energy above the work function. The energy provided from the photon of light is calculated with: E=(h*c)/L where E is the energy, h is the planck constant, c is the speed of light, and L is the wavelength.Inputting the correct values into the above equation gives: E=6.63 x 10^-34 x 3.0 x 10^8 / 5.9 x 10^-7= 3.37x10-19 J Finally, the work function can be found by subtracting the kinetic energy from the energy provided by the photon to give: W.F.= (3.37-1.14)x10^-19= 2.23x10^-19 J

BJ
Answered by Bevan J. Physics tutor

2424 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B


How would I resolve forces on a slope?


Calculate the time taken for 1000L of water at rtp to be heated to 40degrees celsius using a 40kW heater


What is the definition of a moment?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences