Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?

The Work-Energy principle states that the total work done on or by an object is equal to the total change in energy between the given initial and final states. This can be reworded to also say that the total loss in energy of an object is due to the work done by the external force, e.g. friction. We can also say that the gain in energy of the object is due to the work done by an external force, e.g. someone pushing the object or a source of thrust like an engine. This principle is a step forward from the principle of conservation of energy, in which we learn that the total energy is conserved, but may change form from kinetic to gravitational, elastic etc. In that principle, we are working in a closed environment where external forces don't effect the object. In a real world, such a scenario is impossible, and we need to consider how external forces influence the behaviour, hence the work-energy principle.

In the case of the example in the question, the box begins at rest and at a given height. As it slides down the rough slope, the friction force does work against the motion of the box. The gravitational potential energy (GPE) the box has converts to kinetic energy. In a closed system, all the GPE would convert to kinetic energy. However due to the external friction force, some energy is dissipated (e.g. as heat). The total energy 'lost' at the end is equal to the work done by friction, which is what the work-energy principle states.

JA
Answered by Jagan A. Physics tutor

14764 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Draw the electric field lines produced by a negative point charge and calculate the electric field strength at a distance of 50mm from a point charge of size -30nC.


A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.


Calculate the length of a 120m (as measured by the astronaut) spaceship travelling at 0.85c as measured by a stationary observer


The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the elecrtomagnetic spectrum. Explain how the mercury atoms become excited.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning