The boiling points of ammonia (NH3), fluorine (F2) and bromine (Br2) are -33, -188 and +59 degrees celsius respectively. Explain the differences in these boiling points, including the names of any relevant forces and particles.

Differences in boiling points between molecules are due to varying strength of intermolecular forces. From the data given, we know Br2 must have the strongest intermolecular forces as it has the highest boiling point, followed by NH3 and then F2. We can then use our knowledge of these molecules to determine the intermolecular forces present.

NH3 has hydrogen bonding as the intermolecular forces, as this is only present between H atoms and highly electronegative atoms such as N. Both Br2 and F2 consist of 2 equally electronegative molecules, so Van der Waals' (VdW) forces are the intermolecular forces present. From the order of boiling points, we can determine that the VdW forces in Br2 must be stronger than the VdW forces in F2 - this is because Br2 has more electrons which can create temporary dipoles. The hydrogen bonding in NH3 is stronger than the VdW forces in F2 but weaker than the VdW forces in Br2, leading to the differences in boiling points seen.

AH
Answered by Alex H. Chemistry tutor

69477 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Using chemical reagents in test tubes, distinguish between isomers: A CH3CO(CH2)2CHOH, B CH3CH(OH)(CH2)2CHO and C C(CH3)2OHCOCH3


pH and Kw question: A student dissolves 1.75g of a drain cleaner (based on NaOH) in water and makes the solution up to 100cm3. The student measures the solution pH as 13.60. Determine the percentage of NaOH in the drain cleaner, in terms of mass (g).


Palladium acts as a heterogeneous catalyst in the reaction between an alkene with hydrogen by providing an alternative reaction route. Describe the stages of this reaction route. (3 marks)


Why are molecules coloured?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning